If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-34x-19=0
a = 9; b = -34; c = -19;
Δ = b2-4ac
Δ = -342-4·9·(-19)
Δ = 1840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1840}=\sqrt{16*115}=\sqrt{16}*\sqrt{115}=4\sqrt{115}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-4\sqrt{115}}{2*9}=\frac{34-4\sqrt{115}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+4\sqrt{115}}{2*9}=\frac{34+4\sqrt{115}}{18} $
| f/3=-4 | | 2(1-6p)=86 | | -4(6-9r)=12+4(11r+7) | | 2.4-(m/2)=10 | | -114=2x-2(8+8x) | | a+2+5a+16=8a-70 | | 2x(3)=87 | | x-30=98 | | -17-3x=10 | | 3w+6=188 | | 2(x−4)=9x−10−7x | | 18=8-6x-8 | | 8-4=4-6*x | | 4/9d-(-1/9)=2/3 | | x-14=-95 | | 6(8x+7)-7=371 | | 15x2-3x=0 | | 6x=4-7 | | 3/5w=-27/25 | | -28-6x=-82 | | (2*x)/x^2+1=(3*x)/x^2+2 | | -21-3x=-48 | | 3n-1=9 | | x-0.25x=78 | | -12+6x=-30 | | -4a+7-a=-3+5a | | X+-0.25x=78 | | x/11=9/15 | | -3x+21=-5x-1 | | 5y-84=61 | | T=3q+7 | | 8(4-2p)=144 |